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Data visualization:
the end of the rainbow

t the core of all good science and engineer-
ing is the respectful treatment of data: instru-
ments are calibrated, algorithms are scruti-
¢ nized, and the behavior of analytical or
simulation models studied, on the assumption that the
tools suit the data at hand.

But the knowledge to use one set of tools, data visu-
alization software, is often lacking. Visualization should
help make sense of the flood of output data. When applied
without some insight into visual perception, however, it
can introduce errors in understanding as surely as if a
wrong analysis algorithm were used. In short, a picture
can tell a thousand lies.

Blind spots in visualization are inevitable if attention
is not paid to how the human visual system processes infor-
mation, to the nature of the data, and to how the data are
to be used. But once identified, these factors can be manip-
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ulated to good effect, as a variety of visualizations drawn
from fields as diverse as geography, medicine, and physics
will show.

The key is the colormap, which may be defined as a
mapping from a data value to a color. (The term colormap
is also sometimes used in other contexts specifically for
the contents of the memory locations governing display.)

A rainbow colormap is often supplied as a default in
visualization software, the vendor wishing perhaps to pro-
vide the greatest possible range of colors with which to
work. In this kind of colormap, red is mapped to the high-
est data value, blue to the lowest, and the other data val-
ues are interpolated along the full extent of the spectrum.
An example would be a temperature profile mapped over
a land mass on a weather map.

But there is more to color than meets the eye. Color,
after all, is a perceptual as well as physical phenomenon.
What is commonly called color—hue—is only one of three
parameters. Another is the brightness of the signal—inten-
sity. The third is the admixture of white—saturation. Change
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any one parameter enough, and the color looks different.
(The hue-intensity-saturation model of color is one of a
several explored through the years, and captures some of
the basic characteristics of basic color perception.) To make
matters worse, the parameters’ relationship to what is per-
ceived is nonlinear. At the same intensity, for example,
yellow appears brighter than blue.

Some of the perceptual principles involved have been
implemented in software developed at IBM Corp.’s
Thomas J. Watson Research Centet, Yorktown Heights,
N.Y. The module runs with IBM’s visualization package
Data Explorer and is called Pravda (for perceptual rule-
based architecture for visualizing data accurately). Though
not yet commercially available, it is in use in several pro-
jects [see “Using Pravda's rules,” p. 59].

What happened to Florida?

Consider the pair of visualizations in Fig. 1. Both images
represent the same data, but appear radically different—
all the more surprising because they use colormaps that
are mathematically equivalent, having a one-to-one map-
ping from color value to data point.

A rainbow colormap produces the left-hand view in
Fig. 1. There, a large sheet of yellow dominates, an inlet
of blue rimmed with cyan and green intrudes, and some
dark red regions are clustered on the upper right. But treat
the same data with another colormap, one perceptually
tuned to the type of data and the message the visualiza-
tion is to convey, and the contours of the southeastern
United States leap into view [Fig. 1, right]. The bound-
ary of the continental shelf and areas of deep ocean are
shown in a purple that darkens with water depth. The
Appalachian Mountains rising from the coastal plains are
clearly distinguished as regions of lighter and lighter green.

Why the difference? The perceptually tuned colormap
has been designed so that equal steps in the data variable
will be perceived as equal steps in the representation. The
data also include a threshold color value—a clear bound-
ary of interest to the user of the data, namely, sea level. This
characteristic of the interval data is also explicitly incor-
porated into the colormap.

In contrast, in the first image, the rainbow colormap
has very rough contouring. Yet these blue, cyan, green,

yellow, and red regions purport to represent a fine sam-
pling of a continuous phenomenon: the gradual rise of
the land mass, and the gradual descent of the seabed
(the sampling resolution is 1 meter vertically and about
8 km horizontally).

The rogues’ gallery

The misleading artifacts produced by the rainbow col-
ormap are easy to recognize when a well-known conti-
nental coastline is the subject. With less familiar data, the
visualization of features and relationships is trickier. A
sense of how interpretations can go awry may be gleaned
from the following rogues’ gallery of visualizations taken
from four disciplines: a portion of the Chesapeake Bay
basin in Maryland; a magnetic resonance image (MRI) of
a human head; noise from a jet aircraft engine; and the
earth’s magnetic field [Fig. 2].

Each row has three different visualizations of a single
underlying dataset. The monochrome visualization on the
left is a standard of comparison, as well as the simplest
of the three images. In this type, a surface representation,
each magnitude was placed at a height proportional to its
value. Then perspective was added and the surface shaded
with a light source at the location of the viewer. In short,
the brightness levels, or luminances, are not analytically
proportional to the datapoint values, but are a result of
simple lighting.

The rogues’ gallery comprises the centers of the rows;
here the magnitudes are mapped, with the aid of a rain-
bow colormap, in a color value interpolated between blue
and red. More appropriate visualizations using perceptual
colormaps form the third image in each row, and will be
discussed later, after a look at the rainbow mappings and
their inadequacies.

The first portrait is an elevation model of a portion of
the Chesapeake Bay basin in Maryland and part of Virginia,
including the mouths of the Potomac and Patuxent rivers.
With the surface representation [Fig. 2, top row, left] the
viewer can see quite easily that the coastline emerges grad-
ually and continuously, leading into the rivers’ well-defined
tributary structure.

The neighboring representation using the rainbow col-
ormap masks many of these tributaries. Much of the data’s
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[1] These two images have the same underlying dataset of the Southeastemn portion of the United States. The image at left, mapped to a
rainbow spectrum common in visualization software, obscures the coastline and flattens the rise and fall of the land mass and sea
bed. But in the right-hand image, a new color is chosen for the threshold at sea level, and the fine gradations are revealed by color

changes matched to the appropriate mechanisms of visual perception.

DATA: NASA/GODDARD SPACE FLIGHT CENTER (GSFC)



[2) Each of these four
TOWS contains three
visualizations of the
same data.

In the leftmost
images, the magnitudes
are raised to a height
proportional to their
value, producing the
simplest visualizations.

The middle images,
map the same data to
rainbow colormaps,
with loss of structural
information.

For the rightmost
visualizations, color-
maps are chosen in
accordance with the
spatial frequencies of
the data and how they

are processed visually.
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complexity is lost in the variation from green to cyan.
The visualization also introduces a false segmentation
of the higher elevations: instead of appearing contin-
uous, they seem sharply divided into four distinct col-
ored areas.

Data captured in an MRI scan of a human head
appear next [Fig. 2, second row]. In the center image
the entire numerical range from 150 to 300 appears to
be a uniform cyan (the units refer to the intensity val-
ues of the scan image). Put another way, although these
data change by a factor of two, all the values in this
range look yellow. Similarly, all the values from 300
to 500 appear to be green. .

What's more, the use of the rainbow colormap divides
up the data range into just a few bands, suggesting incor-
rectly that there are just a few values in the data. To make
matters worse, these bands are unevenly spaced. The col-
ormap produces a contoured impression, masking the
subtle, continuous variations in intensity easily visible in
the monochrome surface representation.

A simulation of noise from a jet aircraft engine comes
next. The leftmost representation [Fig. 2, third row]
reveals a complex, turbulent scene. The viewer’s under-
standing of the middle image, however, is led astray
by the segmentation produced when the rainbow
colormap is used. The image reveals neither the mul-
tiple peaks in the quickly changing visual detail of
the region in the left half nor the undulating structure
on the right.

Last comes a model of the earth’s surface magnetic
field on a cylindrical Cartesian projection [Fig. 2, bot-

tom row]. In this projection, the north pole is stretched
along the top of the image, the south pole along the
bottom, and the equator bisects the rectangle hori-
zontally.

The surface representation shows how the magnetic
field varies very gradually, increasing slightly at the mag-
netic poles. Yet the middle image strongly suggests large
and sharp changes in magnetic field, particularly near
the magnetic pole.

Perceptual encoding

Clearly, better visual representations of data are
needed, particularly by way of colormaps that will induce
more faithful impressions of the structure hidden in
the data. The best visualizations are those created with
the following trinity in mind: color perception, the spa-
tial frequency of the data, and the task at hand.

The basic question is: how should color be used to
encode characteristics of interest in a dataset. For an
answer, the authors drew on pioneering psychophysi-
cal experiments of Harvard University’s S. S. Stevens.
Stevens examined how different sensory modes re-
sponded to changes in magnitude, and after extensive
testing with human subjects, found that perceived lumi-
nance and perceived saturation varied smoothly with
physical magnitude. We surmised that these dimensions
would be useful for encoding magnitude in a colormap.

We extended these ideas to studying how colormaps
based on these dimensions were employed depending
on the spatial variation of the underlying data—that
is, if the data has a high or low spatial frequency.
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DATA: UNITED STATES GEOLOGICAL SURVEY (ROW 1), NATIONAL LIBRARY OF MEDICINE (ROW 2), COMBUSTION RESEARCH AND FLOW TECHNOLOGY, INC. (ROW 3),

NASA/GSFC (ROW 4)
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[3] Luminance and saturation mechanisms in human vision have a broad range in spatial sensitivity, but each has different strengths.

Mapping the frequency-modulated grating [bottom row] only in saturation of two hues is better for perception of low frequency [top row].

The high-frequency cycles are more easily discerned with maps that vary in luminance [middle row].

Spatial vision

The luminance and saturation mechanisms in
human vision each have a broad range in spatial sen-
sitivity. But it turns out that the luminance mecha-
nism excels at processing the detailed changes of high-
frequency information, whereas saturation mechanisms
are better for the undulating variations of low-fre-
quency information [Fig. 3].

The bottom row of Fig. 3 is a waveform of a fre-
quency-modulated grating, which begins at one cycle

and then increases. The variation in data value is rep-
resented by two colormaps: the first, shown on the
top row, varies only in saturation and uses only two
hues; the second, on the middle row, varies only in
luminance (brightness).

At the low-frequency end of the spectrum [the left
column of Fig. 4], the sinusoidal variation is more vis-
ible with the colormap that varies in saturation than
with the colormap where luminance is the variable.
Now consider the grating with the modulation of about
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[4] Datasets like this
atmospheric ozone
distribution often have
multiple spatial
frequencies and can
be examined with
differing colormaps.
Here, luminance
changes reveal
atmospheric
circulation [upper
right]; saturation
changes in two
directions reveal ozone
depletion [lower left];
and the two maps can
be combined [lower
right]. A rainbow-
mapped image is

given for comparison

[upper left].

10 cycles—a high spatial frequency. Here, many more
of the grating’s high-frequency cycles can be seen with
the luminance-varying colormap than with the col-
ormap that varies in saturation.

The use of perceptual colormaps with real data
can now be examined. Consider the four images in
Fig. 4, which have differing colormaps but the same
dataset, taken from the atmosphere above the earth’s
southern hemisphere.

At top left, a rainbow colormap is shown for com-
parison. Next, the Dobson data (the units are used
to measure ozone levels) is mapped onto a luminance-
varying colormap, which reveals the data’s high spa-
tial frequencies quite successfully. Then, a saturation-
varying colormap, representing low spatial-frequency
data, was used to produce the third image; here the
colormap increases in saturation from an achromatic
(hue = 0) midpoint, becoming an ever more intense
red for higher data values and an ever more intense
green for lower data values. The grand finale combines
the luminance and saturation variations of the low and
high spatial-frequency maps.

More precisely, as can be seen in lower-right image,
which uses both colormaps, ozone depletion, in gen-
eral a low spatial frequency feature, is rendered with
the saturation colormap. Atmospheric circulation,
which is of high spatial frequency, is effectively cap-
tured by the luminance colormap.

The gallery revisited

The discussion of Fig, 2 was left hanging, with the
four datasets represented only by a surface and a rain-
bow-colormapped visualization. Perceptual colormap-
ping along the lines just described yields the last image
in each row.

The Chesapeake topography very obviously supplies
a threshold as well as interval data having a high spa-
tial frequency. A perceptual colormap is therefore
applied that uses luminance variation to reflect the
rapid variation in data value across the domain. This
variation increases from the threshold for the coastline

and decreases for elevations below a nominal sea level.
Hue was used to reinforce the luminance variations.
Notice how clearly this colormap shows the tributaries
of the Potomac and Patuxent rivers.

In the MRI scan of the brain, the high spatial fre-
quency of the interval data is enhanced with a primarily
grayscale colormap. Luminance increases monotoni-
cally, and hue, which begins as a pure vivid blue, fades
more and more to a pastel shade. This colormap pro-
duces a monotonic increase in perceived magnitude
over the range. Notice how the fine detail in the struc-
tures in the image stands out in contrast with that lost
with the rainbow colormap.

The two MRI images warrant a further word. The
medical community has been cautious about adding
color to its visualizations, and justifiably so. The rain-
bow-mapped visualization might appear to be prettier,
but the (rarely provided) perceptually mapped one
more accurately reflects the structure of the data.

A mix of data perceptions must be handled for the
image of the simulated jet engine noise, because the
data has regions of both low and high spatial frequency.
A saturation-based colormap is used, but with a larger
range than for the MRI task.

For the earth’s magnetic field, a properly tuned col-
ormap eliminates another kind of false impression that
can be given by a rainbow colormap. Data with a low
spatial frequency underlie this row. So a colormap was
devised with a saturation increasing from achromatic
(gray) in the yellow direction for higher magnetic field
strength and in the blue direction for lower values. The
magnetic field can then be seen to vary gradually—
witness the steady increase in the range from 0.35 to
0.55 G—becoming strongest at the geomagnetic poles.

Tasks in visualization

In the examples covered so far, the interpretation
depends on matching equal steps in the data to equal
steps in perception— “equal” perceptually in the sense
that one can say “x seems twice as dark as y,” for exam-
ple. These may be termed isomorphic visualization tasks.
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[5] Ranges within a data-
set are handled differently,
depending on the visualization
task. In isomorphic visualiza-
tion, equal steps in the data
are matched to equal per-
ceptual steps [upper right];
segmentation strongly
separates regions {lower
right]; and highlighting draws
attention to a specific region
[lower right]. The rainbow-
mapped image at the upper
left is shown for comparison.

DATA: NATIONAL LIBRARY OF MEDICINE

It is also vital to match the visual representation
to other visualization tasks: segmentation and high-
lighting. Both of these tasks reflect an interest in under-
standing how a phenomenon behaves within specific
ranges of values. But within the total dataset, these
ranges are used differently.

In segmentation, the analyst looks at the entire range
of data, but the range is partitioned. The perceived
ordering of the segments should match the order of the
data values in some nonarbitrary way. Practically speak-
ing, the analyst should get a sense of how data values
and color values are related without having constantly
to refer to the colormap.

In highlighting, the analyst identifies a limited range
of a variable and sees how the range expresses itself
in the dataset. The task may be to probe the exact
ranges where the dose of a radiological treatment affects
distant healthy tissue, ot the particular magnitude at
which the wind changes direction in a meteorologi-
cal simulation.

Figure 5 exploits these refinements in a return to the
skull cross-section of Fig. 2. Here, again the rainbow-
mapped image [upper left] calls attention to the yel-
low areas not because they are in any way the most
important, but because they are the brightest.

In contrast, the isomorphic color map at the upper
right in Fig. 5 is designed to faithfully represent the data
structure by matching equal steps in the data to equal
perceptual steps. Notice that this colormap varies sub-
tly from the isomorphic one in Fig. 2. In this case, the
analyst is interested in the nut-shaped cluster near the
center of the image.

In contrast to the image as a whole, this area has a
fairly low spatial frequency structure. Since this data
has mixed spatial frequency (as in reality do almost
all datasets), but is leaning toward high, a luminance-
based colormap was chosen, but with a relatively wide
variation in hue and saturation.

Segmentation tasks are the job of the colormap at
lower left, which must help delineate regions visually.
Strongly separated and rather few color segments are

therefore called for, as seen in the color bar to the right.

Highlighting, handled by the colormap at lower right,
draws the user’s attention to certain regions in the
image and their characteristic features. For example,
perhaps the nut-shaped object toward the rear of the
skull hides a tumor. The visualization in the upper right
shows the same region, which is one of high spatial fre-
quency. But to answer this particular question about
this particular area, it is necessary to highlight the most
important data values—those near the median of the
range of interest—and the color map for the lower right
image was designed accordingly, with a wide span strad-
dling the median.

Three dimensions and up

The ideas discussed so far can be extended to visu-
alizations in three dimensions with multiple datasets.
An imposing example using assorted ways to clearly
and logically present an abundance of information is
shown in Fig. 6. These data are from an analysis of var-
ious weather observations on 19 November 1997 at
0900 local time in the San Jose, Calif., area. (This image,
like many of the others shown, is one of a time series.) In
this one image, four distinct colormaps are used to visu-
alize temperature, precipitation, humidity, and wind speed.

These four variables, represented in some cases with
a variety of geometries for multiple purposes, are joined
by a variable for barometric pressure, the vertical axis
in this information space. Atmospheric pressure is asso-
ciated with elevation, and thus a topographic projec-
tion of the San Jose area can be situated with the addi-
tion of the other two axes, for latitude and longitude.

The choice of colormaps for each of these vari-
ables and their realizations is based in part upon their
spatial characteristics and in part on the task associ-
ated with the visualization. For example, quite noisy
(that is, high spatial frequency) data such as wind speed
are mainly mapped into luminance. Quite smoothly
varying data ate mainly mapped into saturation, to
impart a continuous representation.

For the task of segmenting the total humidity data
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levels over San Jose, the data are mapped into a set
of bands (wrapped around the two “data poles”) by way
of the segmented colormap on the lower left of Fig.
6, which maintains the perception of ordinal rela-
tionships in the data.

Another segmentation approach to the relative-
humidity data is in the isosurface visualization in white
of the values of 90 percent; this surface is translucent
s0 as not to obscure other information. The white sur-
faces, logically enough considering the rough condi-
tions under which clouds are formed, are easily rec-
ognized as cloud boundaries. The temperatures at all
heights at a given longitude are shown as segments
on a vertical slice: temperature is smoothly varying
data, but this task is segmentation, and thus requires
more segments.

Vector arrows (or, in visualization terms, glyphs)
representing the upper air wind data are posted along
the two poles that also serve for the relative-humid-
ity data. These point in the direction of the wind field
and their color is correlated with the horizontal wind
speed. The speed values, represented with a purplish
wind-speed colormap [upper left], are also represented
by the varying lengths of the arrows.

The relation of the full set of relative humidity data
and the 90-percent-mark isosurface making up the
“clouds” subset can be seen where each pole intersects
the contour: a check of the humidity colormap [lower
left] shows the color at this point on the bar and pole
as 90. The pole-and-arrow combination appears twice,
indicative of readings at different locations.

A variable for total precipitation [see the cyan-pink
colormap at lower right] is overlaid on the topographic
map at the bottom of the image. The precipitation data

[6] This rich visualization of weather over San Jose, Calif., has differing colormaps to match multiple visualization tasks and different spatial
frequencies of the data. Vector arrows representing the wind speed and direction are perched on poles of humidity readings; an iso;ttv"face of
translucent white shows 90—percent-humidity levels [“clouds”]; and heavy lines mark coastlines [black] and rivers [blue].

is low spatial frequency, and thus the hues are altered
primarily by saturation.

To show in general how the precipitation is deposited,
the median of the values (0.025) was assigned the max-
imum desaturation, with the red and blue hues becom-
ing more saturated as they increase and decrease, respec-
tively. Atop the topographic map run the paths of rivers
[blue] and coastlines [black].

In sum, modern systems for creating visualizations
have evolved tremendously. But their use is very much
an improvisation, with analysts fiddling with them
repeatedly until something satisfactory seems in hand.
A better grasp of just what is involved can improve
one’s effectiveness in creating visualizations, and, more
importantly, the viewer’s understanding of them, 4

To probe further

The classic article describing the notion of perceptual
scales, and how different stimuli can be used to repre-
sent magnitude information, is S. S. Stevens’ “Matching
Functions Between Loudness and Ten Other Continua.”
Anthologized frequently, it first appeared in Perception
and Psychophysics,Vol.1, pp. 5-8, 1966.

An early paper describing the importance of colormaps in
computers is P. K. Robertson’s “Visualizing Color Gamuts:
A User Interface for the Effective Use of Perceptual Color
Spaces in Data Displays,” IEEE Computer Graphics and
Applications, Vol. 8, pp. 50-63, September 1988.

The importance of selecting colormaps that allow the user
to see differences in data over a large dynamic range is
described in the same journal by H. Lefkowitz and G. T.
Herman, in “Color Scales for Image Data” JEEE Computer
Graphics and Applications, Vol. 12, no. 1, pp. 72-80,
January 1992.
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Using Pravda’s rules

ew users of visualiza-

tion tools want to be-

come experts in human
perception. In software called
Pravda (perceptual rule-
based architecture for visu-
alizing data accurately),
choices for colormapping are
offered to the user based on
principles of perception and
color theory.

Shown here is Pravda be-
ing used during an interac-
tive session with IBM Visu-
alization Data Explorer (DX)
software, DX is a visual-lan-
guage. object-based pack-
age, as can be recoghized
from the connected modules
shown in green.

The data to be visualized
are imported into Data Ex-
plorer and flow into a mod-
ule called PravdaColor. This
tool determines the data’s characteristics, including their
spatial frequency—essentially, checking the results of
data filtering.

With the aid of a control panel [lower right], the user
selects the colormapping goal of the visualization: iso-
morphic, segmentation, or highlighting. These choices call
up rules that constrain the set of colormaps. Here, six
colormaps have been offered.

The data are from a temperature model for weather. The
user has selected an isomorphic task (equal intervals rep-

The authors’ “Using Perceptual Rules in Interactive Visu-

alization” is a more comprehensive look into the psycho-

physical principles described in this article. The paper
appeared in the SPIE Proceedings on Human Vision,

Visual Processing and Digital Display, Vol. 2179, 1994,

pp. 287-95.

Among larger texts, E. Tufte’s The Visual Display of Quan-

titative Information (Graphics Press, Cheshire, Conn.

1990) has quickly become a classic, with beautiful and

superbly chosen examples plucked from this field’s

long history.

As for standard techniques and methods in computer

graphics, including treatment of color spaces, no library

is complete without J. D. Foley, A. van Dam, S. K. Feiner,
and S. F. Hughes’s Computer Graphics, Principles and

Practice, second edition {(Addison-Wesley, Reading,

Mass., 1991).

$.S. Steven's Handbook of Experimental Psychology (John
Wiley & Sons, New York, 1955) has an excellent in-
troductory chapter on measurement theory and data
types. For a modern treatment of vision from a psy-
chophysical perspective, see Brian A. Wandell’s
Foundations of Vision (Sinauer Associates, Sunderland,
Mass., 1995).

The authors’ implementation of Pravda (perceptual
rule-based architecture for visualizing data accurately)
is discussed in a paper by them and L. Bergman in
“A Rule-based Tool for Assisting Colormap Selection”
Proceedings of the IEEE Computer Society Visuali-
zation ‘95, October 1995, pp. 118-125, and can also

DATA* NOAA/FSL

resented by equal steps in perceived color). And, since the
data are of a low spatial frequency, these colormaps all
encode variations in magnitude mostly as saturation vari-
ations. A click on any of the colormaps applies it directly
to the data. The user is free to vary the range of the col-
ormap, and here the full range of the fifth colormap has
been selected.
Pravda is not available commercially, but a version of
it may be in the future.
—B.ER & LAT

be viewed on the World Wide Web at htip://www.
almaden.ibm.com/dx/vis96/proceedings/PRAVDA/ind
ex.htm).

Pravda was designed for IBM Visualization Data Explorer
(DX), a general~purpose software package for interac-
tive data visualization and analysis. DX has a graphical
program editor that allows the user to create a visual-
ization using a point and click interface. DX runs on
seven major Unix platforms and on Intel-based PCs, and
is parallelized for multiprocessor systems. More infor-
mation about Data Explorer is available on the Web at
www.ibm.com/dx.
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